GCSE (9-1) Mathematics
 J560/06 Paper 6 (Higher Tier)

Tuesday 12 June 2018 - Morning

Time allowed: 1 hours 30 minutes

You may use:

- a scientific or graphical calculator
- geometrical instruments
- tracing paper

INSTRUCTIONS

- Use black ink. You may use an HB pencil for graphs and diagrams.
- Complete the boxes above with your name, centre number and candidate number.
- Answer all the questions.
- Read each question carefully before you start to write your answer.
- Where appropriate, your answers should be supported with working. Marks may be given for a correct method even if the answer is incorrect.
- Write your answer to each question in the space provided. Additional paper may be used if required but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the barcodes.

INFORMATION

- The total mark for this paper is 100.
- The marks for each question are shown in brackets [].
- Use the π button on your calculator or take π to be 3.142 unless the question says otherwise.
- This document consists of 20 pages.

Answer all the questions.
1 Ping chooses four numbers.
The mode of these four numbers is 8 , the range is 7 and the mean is 11 .
Find Ping's four numbers.
mode $=8$ so at least two of the numbers are 8
sum of all 4 numbers $=4 \times 11=44$
$-16\left(\begin{array}{l}8+8+x+y=44 \\ x+y=44-16=28\end{array}\right.$
x and y are the two unknown numbers
range $=7$ so the highest number is $8+7=15$ - either x or y
$-15)^{1}$

$$
y=28-15=13
$$

\qquad
2 A box contains only red, blue and green pens.
The ratio of red pens to blue pens is $5: 9$.
The ratio of blue pens to green pens is $1: 4$.
Calculate the percentage of pens that are blue.
red : blue
blue: green

$$
5: 9
$$

$$
\div 9\left(\begin{array}{lll}
1 & : & 4 \\
9 & : & 36
\end{array}\right) \div 9
$$

equal number of parts of blue pens to combine ratio
red : blue : green
$5: 9: 36$ so the total number of parts in the ratio is

$$
5+9+36=50
$$

percentage of blue pens: 9×100 blue parts of ratio $\overline{50}$ total parts of ratio

3 Ashe worked out $\frac{326.8 \times(6.94-3.4)}{59.4}$.
She got an answer of 19.5 , correct to 3 significant figures.
Write each number correct to 1 significant figure to decide if Asha's answer is reasonable. 336.8 ~ 300
$6.94 \sim 7$ $3.4 \sim 3$ $59.4 \sim 60$

$$
\begin{aligned}
& \approx \frac{300 \times(7-3)}{60} \\
& =\frac{300 \times 4}{60}=\frac{1200}{60}=20
\end{aligned}
$$

Asha's answer is reasonable as 19.5 rounds to 20.

4 (a) Show that $a^{5} \times\left(a^{3}\right)^{2}$ can be expressed as a^{11}.

$$
\begin{aligned}
& =a^{5} \times a^{3 \times 2}=a^{5} \times a^{6} \\
& a^{5} \times a^{6}=a^{5+6}=a^{11} \\
& \left(a^{3}\right)^{2}=a^{3 \times 2} \\
& a^{m} \times a^{n}=a^{m+n}
\end{aligned}
$$

(b) Write $\frac{1}{125} \times 25^{9}$ as a power of 5 .

$$
\begin{aligned}
& \frac{1}{125}=\frac{1}{5^{3}}=5^{-3} a^{-n}=\frac{1}{a^{n}} \\
& \begin{aligned}
25^{9} & =\left(5^{2}\right)^{9}
\end{aligned}=5^{18}-\left(a^{n}\right)^{n}=a^{n \times n} \\
& \frac{1}{125} \times 25^{9}=5^{-3} \times 5^{18} \\
&=5^{-3+18} \\
&=5^{15} \quad a^{15}
\end{aligned}
$$

5 The diagram shows a straight line that passes through points A and B, and a curve that passes through points P and Q .

(a) Find the equation of the straight line. y-axis, where $x=0$
 gradient

$$
=\frac{3}{4}
$$

(a) $\quad y=\frac{3}{4} x+2$ y-intercept $=(0,2)$ so $c=2$ therefore: $y=\frac{3}{4} x+2$
(b) The equation of the curve is $y=x^{2}+k x+8$.

Find the value of k.

$$
\left.\begin{array}{l}
y=x^{2}+K x+8 \\
\mathcal{V}=(-4)^{2}+K(-4)+8 \\
\mathbb{V}=16-4 K+8 \\
\mathbb{V}=24-4 K \\
4 K+12=24
\end{array}\right)+4 K
$$

$$
4 K=12,)-12
$$

$$
k=3) \div 4
$$

(b) $k=$ \qquad 3
(c) Diann draws line BQ.

She says
Triangle $A B Q$ is isosceles.
Is Diann correct?
You must show all your working.
$Q:(0,8)$
length $A Q=8-2=6$ so length $a=3$
length $M B=4$ so length $b=4$

$$
\begin{aligned}
& a^{2}+b^{2}=H_{1}{ }^{2} \\
& 3^{2}+4^{2}=H_{1}{ }^{2} \\
& H=\sqrt{25}=5 \\
& a^{2}+b^{2}=H_{2}{ }^{2} \\
& 3^{2}+4^{2}=H_{2}{ }^{2} \\
& H=\sqrt{25}=5
\end{aligned}
$$

y-intercept of curve: value of y when $x=0$

$$
\begin{aligned}
& y=x^{2}-4 x+8 \\
& y=0^{2}-4(0)+8 \\
& y=8
\end{aligned}
$$

$H_{1}=H_{2}$ therefore $A B Q$ is isosceles. Yes, Diane is correct.
[4]
$6 y$ is inversely proportional to x.
$y=0.04$ when $x=80$.
Find the value of y when $x=32$.

$$
\begin{aligned}
& y \propto \frac{1}{x} \quad \begin{array}{l}
k=\frac{k}{x} \\
0.04=\frac{k}{80} \\
K=0.04 \times 80=3.2 \quad \text { is the constant of proportionality } \\
y=\frac{3 \cdot 2}{x} \\
y=\frac{3 \cdot 2}{32}=0.1 \\
\text { substitute } x=32 \quad y=80, y=0.04
\end{array} \quad . \quad 0.1
\end{aligned}
$$

7 Edsel has four number cards.

Sharon has three number cards.
u represents a number that Sharon knows.

Edsel and Sharon each pick one of their cards at random.
They calculate the difference between the numbers on their cards.
This is their sample space.

Edsel

						3	8	9	12
Sharon	6	3	2	3					
11	8	3	2	1					
u	11	6	r	t					

Work out the values of r and t.
$u-3=11$
$\begin{aligned} u & =11+3 \\ & =14\end{aligned}$

$\begin{aligned} t & =u-12 \\ & =14-12\end{aligned}$
$=2$ \qquad

8 The graph shows the speed of a tram as it travels from the library to the town hall.

(a) Calculate the deceleration of the tram as it approaches the town hall. gradient $y_{2}-y_{1}=0-6--6=-0.3$ acceleration. Negative gradient is gradient $=\frac{x_{2}-x_{1}}{x_{1}}=\frac{-6}{85-65}=-0.3$ therefore deceleration. flip sign for deceleration
deceleration $=0.3 \mathrm{~m} / \mathrm{s}^{2}$
(b) Calculate the distance travelled by the tram between the li
distance travelled = area under speed-time graph $a_{1}:$ area $=\frac{1}{2} \times 65 \times 6=195 \quad$ from graph \quad area of a triangle $=\frac{1}{2} \times$ base \times height $a_{2}:$ area $=\frac{1}{2} \times 20 \times 6=60$
distance travelled $=195+60=255 \mathrm{~m}$
(b) 255
(c) What was the maximum speed of the tram as it travelled between the library and the town hall?
Give your answer in kilometres per hour.
maximum speed $=6 \mathrm{~m} / \mathrm{s}-6 \mathrm{~m} / \mathrm{s}$ is the highest point on graph metres / hour: $6 \times 60 \times 60=21600 \mathrm{mh}$

60 sin 60 wins in 1 hour 1 min
hilometres / hour: $21600 \div \frac{1000}{\text {) }}=21.6 \mathrm{hmh}$

$$
1000 m=1 \mathrm{~km}{ }^{(c)} \quad 216
$$

9 The graph of $y=x^{3}-7 x-12$ is shown below. The root of the equation $x^{3}-7 x-12=0$ is p.

$$
\begin{aligned}
& y=x^{2}-7 x-12 \\
& y=(3)^{2}-7(3)-12 \\
& y=27-21-12
\end{aligned}
$$

(a) Calculate y when $x=3$.

$$
y=-6
$$

(a) $y=$ \qquad
(b) Show that $3<p<4$.

$$
y=(4)^{2}-7(4)-12=24
$$

$x=3$ and y is negative
when $x=3, y=-6<0\}$ there is a change
when $x=4, y=24>0\} \begin{aligned} & \text { in sign sop is } \\ & \text { between } 3 \text { and } 4\end{aligned}$
(c) Find a smaller interval that contains the value of p. You must show calculations to support your answer.

$$
x=4 \text { and } y \text { is positive }
$$

negative \rightarrow positive so must cross y-axis (when $y=0$) between 3 and 4.
when $x=3.5, y=(3.5)^{2}-7(3.5)-12=6.375>0$
when $x=3.25, y=(3.25)^{2}-7(3.5)-12=-0.422<0$
\qquad $<p<\ldots 3.5$

PhysicsAndMathsTutor.com

10 Two vectors, \mathbf{a} and \mathbf{b}, are shown on the 1 centimetre grid below.

Show that the vector $\mathbf{a}+\mathbf{2 b}$ has length 7 cm .
You may use the grid below. $\quad \begin{gathered}4 \text { right } \\ \left.\text { Without grid: } a=\binom{-2}{1} \text { lip } b=\begin{array}{l}2 \text { left }\end{array}\right]\end{gathered}$

$$
a+2 b=\binom{4}{1}+2\binom{-2}{3}=\binom{4}{1}+\binom{-4}{6}
$$

$$
=\binom{4+-4}{1+6}=\binom{0}{7}
$$

$$
\text { ti to } \quad \text { to nits up }
$$

11 The diagram below shows two triangles.

Prove that triangle $A B C$ is congruent to triangle $A C D$.
triangle $A B C$:

> angle $\hat{A C B}=180-80-56=44^{\circ}$ triangle $\hat{A C D}$ angle $\widehat{A C D}=180-80-44=56^{\circ}$

Not to scale

AC is common
angle $\hat{A C D}=$ angle $B A C$
angle $\hat{D A C}=$ angle $\hat{A C B}$
Angle-Side-Angle (ASA) therefore triangle $A B C$ is congruent to triangle $A C D$.
\qquad
\qquad
\qquad
\qquad
\qquad

12 The diagram below shows two right-angled triangles.

Prove that triangles PQS and QRS are similar.
METHOD 1:
$Q S^{2}=4^{2}+8^{2}=80 \quad P Q^{2}=10^{2}-(4 \sqrt{5})^{2}=100-80=20$
$Q S=\sqrt{80}=4 \sqrt{5} \mathrm{~cm}$
$P Q=\sqrt{20}=2 \sqrt{5} \mathrm{~cm}$
scale factor $=\frac{P S}{Q S}=\frac{10}{4 \sqrt{5}}=\frac{\sqrt{5}}{2}=1.118$

$$
\begin{aligned}
& =\frac{Q S}{R S}=\frac{4 \sqrt{5}}{8}=\frac{\sqrt{5}}{2}=1.118 \\
& =\frac{P Q}{Q R}=\frac{2 \sqrt{5}}{4}=\frac{\sqrt{5}}{2}=1.1118
\end{aligned}
$$

All pairs of corresponding sides have the same scale factor, therefore PQS and QRS are similar triangles.
METHOD 2:
$\tan Q \hat{Q} R=\frac{4}{8} \quad \hat{Q} R=\tan ^{-1}\left(\frac{4}{8}\right)=26.6^{\circ} \quad \tan =\frac{0}{A}$
angle $R \hat{Q} S=180-90-26.6=63.4^{\circ}$ angles in a triangle add to 180°
$\cos Q S P=\frac{4 \sqrt{5}}{10} Q S P=\cos ^{-1}\left(\frac{4 \sqrt{5}}{10}\right)=26.6^{\circ} \quad \cos =\frac{A}{H}$
angle $Q \hat{S} P=180-90-26.6=634^{\circ}$ angles in a triangle add to 180°
$Q \hat{S} R=Q \hat{S} P \quad R \hat{Q} S=Q \hat{P} S \quad Q \hat{R} S=\hat{P Q} S=90^{\circ}$
3 pairs of equal angles so the triangles are similar:

13 (a) Calculate the volume of a sphere with radius 6 cm .

[The volume V of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.]

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
&=\frac{4}{3} \times \pi \times(6)^{3} \quad \text { substitute } r=6 \\
&=\frac{4}{3} \times \pi \times 216 \\
&=288 \pi \mathrm{~cm}^{3} \\
& \text { in terms of } \pi
\end{aligned}
$$

(a)
(b) An ornament is made from a solid glass square-based pyramid.

The base has side length 15 cm .
A hemisphere with radius 6 cm is cut out of the base of the pyramid.
This reduces the volume of glass contained in the ornament by 30%.

Calculate the perpendicular height of the pyramid.

[The volume of a pyramid is $\frac{1}{3} \times$ area of base \times perpendicular height.
A hemisphere is half a sphere.]

Volume of Hemisphere:

, from previous question
$V=\frac{1}{2} \times$ volume of sphere $=\frac{1}{2} \times 288 \pi=144 \pi \mathrm{~cm}$
Volume of Pyramid: heep in terms of pi for more exact answer
volume of hemisphere $=30 \%$ of volume of pyramid

$$
\begin{aligned}
& 144=30 \%) \div 3 \\
& 48=180 \% \times \times 10 \\
& 480=100 \% \text { so volume of pyramid }=480 \pi \mathrm{~cm}
\end{aligned}
$$

area of base $=15 \times 15=225 \mathrm{~cm}$
$\begin{array}{rlrl}\text { area of base }=15 \times 15 & =L 25 \mathrm{~cm} & & h \text { is perpend } \\ & =\frac{1}{3} \times 225 \times h & \text { heaume of pyramid } \\ & =75 \mathrm{~h}\end{array}$

$$
\begin{aligned}
75 h=480 \pi \text { so } h=\frac{480 \pi}{75} & =20.106 \ldots \\
& =20.1 \mathrm{~cm}
\end{aligned}
$$

(b)
20.1
cm [5]

14 (a) Standard bricks have dimensions 21.5 cm by 10.3 cm by 6.5 cm , correct to 1 decimal place.
A house is built using 4663 standard bricks.
Joslin says
Placed end to end, the bricks from the house would definitely reach over 1 km .
Show that Joslin's statement is correct.
correct to $1 . \mathrm{d} . \mathrm{p}=$ to nearest $0.1= \pm 0.05 \mathrm{~cm}$
length of brick $=21.5 \mathrm{~cm}$
lower bound $=21.5-0.05=21.45 \mathrm{~cm}$ minimum possible length $21.45 \times 4663=100021.35 \mathrm{~cm}$ $100 \mathrm{~cm}=1 \mathrm{~m}$
even when using the shortest possible lengths, the bricks still reach over 1 hm $1000 \mathrm{~m}=1 \mathrm{~km} \quad=1.0002135 \mathrm{~km}$ which is more than 1 km
(b) A standard brick should weigh 2.8 kg , correct to 1 decimal place.

A truck can carry a maximum load of 20 tonnes.
(i) Calculate the maximum number of standard bricks that the truck should be able to carry.
$\pm 0.05 \mathrm{~kg}$ so upper bound $=2.8+0.05=2.85 \mathrm{hg}$ maximum possible weight 20 tonnes $=20000 \mathrm{~kg} 1$ tonne $=1000 \mathrm{~kg}$
maximum number of bricks $=\frac{20000}{2.85}=7017.54=7017$
the number of bricks the truck can carry if all bricks weight maximum possible weight
(b)(i) 7017 [3]
(ii) Explain why your answer to (b)(i) may not be possible to achieve.

This number of bricks may not fit in the truck.

15 Ratna invests $£ 1200$ for 2 years in a bank account paying r \% per year compound interest. At the end of 2 years, the amount in the bank account is $£ 1379.02$.

Calculate r.
final amount $=$ initial investment X multiplier ${ }^{n}$

$$
n=\text { years after investment }
$$

$£ 1379.02=£ 1200 \times$ multiplier 2

$$
\frac{1379.00}{2.00}=\text { multiplier }^{2}=1.1492
$$

multiplier $=\sqrt{1.1492}=1.072$ to 3.d.p

$$
\begin{aligned}
& 1.072=107.2 \%=100 \%+r \% \\
& r=107.02 \%-100 \%=7.2 \%
\end{aligned}
$$

$$
r=\ldots
$$

16 The box plot shows the distribution of the salaries for the workers at Bexbridge Biscuits.

(a) State the median salary.
(a) $£$ 37.000 \qquad
(b) Find the interquartile range.

Upper Quartile $=£ 43000 \quad$ IR $=$ upper quartile - lower quartile Lower Quartile $=£ 21000$

$$
\begin{aligned}
\text { interquartile range } & =£ 43000-£ 21000 \\
& =£ 22000
\end{aligned}
$$

(b) $£$ \qquad 2000 [2]
(c) The following salary information is true for workers at Camford Cookies.

- The highest paid worker earns $£ 85000$.
- The lowest paid worker earns 20% of the salary of the highest paid worker.
- 25% of the workers earn more than $£ 50000$.
- 25% of the workers earn less than $£ 28000$.
- The median salary is $£ 37000$.

Draw a box plot to show the salaries of the workers at Camford Cookies.

(d) Make two different comparisons between the distribution of the salaries at Bexbridge Biscuits and the salaries at Camford Cookies.

1: Median salaries are the same for both companies.

2: Interquartile range is the same for both companies. ... Bexbridge Biscuits: $50000-28000= \pm 21000$

17 Here is a function.

Function A:

(a) The output of function A is x.

Write an algebraic expression, in terms of x, for the input of function A.

$$
\begin{aligned}
& \text { output } \longrightarrow \div 5 \longrightarrow-14 \longrightarrow \text { input } \\
& (x \div 5)-1_{4}=\text { input } \\
& \frac{x}{5}-1_{4}=\text { input }
\end{aligned}
$$

(a)
(b) A number, k, is put into function A . The output is also k.

Find the value of k.

$$
\begin{aligned}
& (K+14) \times 5=K \\
& 5 K+70=K)-K \\
& 4 K+70=0 \\
& 4 K=-70)-70 \\
& \left.K=\frac{-70}{4}=-17.5\right) \div 4
\end{aligned}
$$

\qquad

18 Percy sells paint in standard tins and large tins.
The standard tin covers $40 \mathrm{~m}^{2}$ and the large tin covers $60 \mathrm{~m}^{2}$.
(a) Percy publishes this chart showing the area that can be covered with each tin of paint.

Explain why the chart is misleading.

The bars for standard tin and large tin are different widths.
(b) The standard tin and the large tin are mathematically similar.

The volume of the large tin is 50% more than the volume of the standard tin.
Both tins are cylinders.
The radius of the standard tin is 10 cm .
Calculate the radius of the large tin.
50% more $=100 \%+50 \%=150 \%=1.5 \times$ standard tin
volume of standard $\operatorname{tin} X K^{3}=$ volume of large tin where K is the scale factor of lengths, K^{3} for volume and k^{2} for surface area
$K^{3}=1.5 \quad$ so $K=3 \sqrt{1.5}=1.14 \ldots$
radius of standard $\operatorname{tin} X K=$ radius of large tin
$10 \mathrm{~cm} \times 1.14=11.4 \mathrm{~cm}$
radius of large tin $=11.4 \mathrm{~cm}$
(b) \qquad

19 Show that $\frac{2 x^{2}+13 x+20}{2 x^{2}+x-10}$ simplifies to $\frac{x+a}{x-b}$ where a and b are integers.

$$
a \times c=2 \times 20=40
$$

factorise $2 x^{2}+x-10$
a $\times c=2 \times-10=-20$

$\frac{2 x(x-2)+5(x-2)}{(2 x+5)(x-2)}$
cancel same bracket from top and bottom
$\left.=\frac{(2 x+5)(x+4)}{(2 x+5)(x-2)}=\frac{x+4}{x-2}\right)$

$$
\text { in form } \frac{x+a}{x-b}
$$

where $a=4$
$b=2$

END OF QUESTION PAPER

OCR

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.
For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

